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The breaking of periodic progressive two-layer interfacial waves at a Gaussian ridge
is investigated through laboratory experiments. Length scales of the incident wave
and topography are used to parameterize when and how breaking occurs. Qualitative
observations suggest both shear and convection play a role in the instability of
waves breaking at the ridge. Simultaneous particle image velocimetry (PIV) and
planar laser-induced fluorescence (PLIF) measurements are used to calculate high
resolution, two-dimensional velocity and density fields from which the local gradient
Richardson number Ri g is calculated. The transition to breaking occurred when
0.2 � Ri g � 0.4. In these wave-ridge breaking events, the destabilizing effects of waves
steepening in shallow layers may be responsible for breaking at higher Ri g than
for similar waves breaking through shear instability in deep water (Troy & Koseff,
J. Fluid Mech., vol. 543, 2005b, p. 107). Due to the effects of unsteadiness, nonlinear
shoaling and flow separation, the canonical Ri g > 0.25 is not sufficient to predict the
stability of interfacial waves. A simple model is developed to estimate Ri g in waves
between finite depth layers using scales of the incident wave scale and topography.
The observed breaking transition corresponds with a constant estimated value of Ri g

from the model, suggesting that interfacial shear plays an important role in initial
wave instability. For wave amplitudes above the initial breaking transition, convective
breaking events are also observed.

1. Introduction
Internal wave breaking is thought to be a major cause of vertical mixing in the

ocean. Despite the importance of this process, breaking events are very difficult
to observe in the field and the physical processes leading to the mixing are not
completely understood. The question of whether shear or convective instability leads
to the breaking of oceanic internal waves has led to substantial debate. The nature of
the instability is important, not simply as an academic exercise, but because the mixing
efficiency can vary significantly depending on the type of instability. The accuracy of
this internal wave breaking efficiency is crucial for parameterizing these processes in
global ocean models. The mixing efficiency of a purely convective instability has been
shown to be 0.5 (Linden & Redondo 1991) whereas the efficiency of shear instability
measured in a range of laboratory experiments and numerical simulations tends to
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be about 0.2 (Peltier & Caulfield 2003). Although a constant efficiency for internal
wave breaking is often assumed for model parameterization, breaking mechanisms
can vary significantly under different conditions. This paper examines when and how
periodic interfacial waves break when they interact with a ridge. Elevated turbulent
diffusivities have been observed over rough bathymetry, suggesting that substantial
diapycnal mixing may occur at submerged ridges and sea mounts due to internal
wave breaking (Lueck & Mudge 1997; Polzin et al. 1997; Toole et al. 1997; Ledwell
et al. 2000). The two main goals of the paper are (i) to use incident wave and
topographic scales to classify when and how interfacial waves break at a ridge, and
(ii) to investigate whether the local gradient Richardson number is a good predictor
of breaking in these wave events. These goals are investigated through laboratory
experiments, using the spatially and temporally resolved methods of planar laser
induced fluorescence (PLIF) and particle image velocimetry (PIV).

The layout of this paper is as follows. In § 2, background information on the
breaking of internal waves at bathymetry is provided. The methods and facility are
described in § 3. In § 4, the results on wave breaking are presented and in § 5 these
results are discussed and compared with a simple theoretical model. Conclusions are
presented in § 6.

2. Background
2.1. Breaking internal waves

Two main processes are proposed for the initiation of instability of interfacial waves:
shear instability at the interface and gravitational or convective instability due to wave
steepening. In the study of the stability of interfacial waves, the stability criterion
for stratified parallel shear flows is often applied. The stability of stratified parallel
inviscid shear flows is governed by the Taylor–Goldstein equation, which can be
solved to provide a gradient Richardson number criterion for stability, where

Ri g ≡ N2

∂u

∂z

2
, (2.1)

and N2 = (−g/ρ0)(∂ρ/∂z). Linear stability is guaranteed for perturbations of all
wavelengths if Ri g > 1/4 everywhere in the flow. If Ri g < 1/4 at any location, the flow
may or may not be unstable (Howard 1961; Miles 1961). Phillips (1966) proposes
that high shear at the crests and troughs of interfacial waves can lead to interfacial
instability. Orlanski & Bryan (1969) argue that overturning driven by gravitational
instability will always occur when the local fluid velocity u exceeds the phase speed
of the wave cp; hence the local Fr > 1 and suggest that in a linear stratification,
instability due to shear should require four times the energy required for convective
instability, and thus convective instability is likely to dominate internal wave breaking.

Recent work (Troy & Koseff 2005b; Fructus et al. 2009), however, has pointed out
the shortcomings of the application of steady, uniform instability criteria to breaking
internal waves; the extreme unsteadiness and non-uniformity of the flow field renders
the gradient Richardson number and Froude number (u/cp) insufficient predictors of
instability.

Recent field observations show dramatic qualitative evidence of shear instability
in the breaking of internal solitary waves of depression over the continental shelf
(Moum et al. 2003). Grue et al. (2000) observe structures suggestive of shear instability
but suggest that, generally, waves observed tend to break when u/cp > 1. De Silva
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et al. (1996) compare the development of Kelvin–Helmholtz billows observed in the
lab with field observations of turbulence in internal solitary waves and find similar
billow growth rates, suggesting overturning observed in the field may be due to
shear instability. For periodic long interfacial waves, Troy & Koseff (2005b) observe
breaking due to shear instability at the crests and troughs of progressive waves in the
laboratory. In numerical simulations, Fringer & Street (2003) observe shear instability
leading to convective instability and weak convective instability for intermediate and
shorter waves, respectively. The breaking of internal waves along topographic slopes
has also been investigated (Thorpe 1987; Ivey & Nokes 1989; Taylor 1993).

2.2. Breaking at topography

A number of studies have examined the process of internal waves shoaling and
breaking on bathymetric features such as slopes, shelves and ridges. When first
mode periodic waves in a continuous stratification interact with a slope, intense
mixing occurs near the bed for waves of critical slope (Cacchione & Wunsch
1974; Ivey & Nokes 1989; Ivey, Winters & De Silva 2000). Field observations
of shoaling internal waves have captured a range of breaking events, including
dense water boluses advected up-slope (Emery & Gunnerson 1973). Similar boluses
were observed in laboratory experiments after gravitational instability developed
in two-layer progressive wavetrain interactions with a shoaling shelf (Wallace &
Wilkinson 1988) and in the numerical simulations of first mode waves in a continuous
stratification (Venayagamoorthy & Fringer 2006).

Laboratory and numerical studies on internal wave interactions with topography
suggest that breaking through shear instability may occur, but as the nonlinearity
of the event is increased, more vigorous mixed or convective breaking dominates. In
laboratory experiments, internal solitary waves of depression shoaling on a uniform
slope became unstable through shear instability on the rear face of the wave (Kao,
Pan & Renouard 1985) and through mixed or convective overturning in more intense
interactions (Helfrich & Melville 1986). Strong, down slope flow from previous
breaking waves can intensify the breaking of incident shoaling waves (Helfrich &
Melville 1986; Wallace & Wilkinson 1988; Sveen et al. 2002; Vlasenko & Hutter 2002).
Sveen et al. (2002) observed convective breaking in lab experiments on internal solitary
wave interactions with a ridge, with shear instability also observed during the strongest
wave-ridge interactions. Shear instability, preceding convective instability, during very
strong wave-slope interactions was observed by Boegman, Ivey & Imberger (2005).

While many studies have looked at wave interactions with a slope or shelf, limited
work has looked at the case of interfacial waves breaking at a ridge (Wessels &
Hutter 1996; Sveen et al. 2002; Chen et al. 2008). The dynamics of wave breaking at
a ridge can be somewhat different than the slope and shelf cases. When the interface
intersects the slope of the ridge, wave breaking would likely be very similar to the
slope case. When the ridge crest is below the density interface, however, wave breaking
is no longer focused along the slope and additional parameters, such as the height of
the interface over the ridge, may impact wave breaking. In the ridge case, waves tend
to shoal as they approach the ridge, and then become less steep as they pass beyond
the ridge, complicating the breaking dynamics. The present study investigates wave
interactions with similar bathymetry to Sveen et al. (2002), but focuses on periodic
progressive wave trains rather than solitary waves.

2.3. Breaking criteria

A variety of breaking criteria have been developed for predicting when interfacial
waves will break. A theoretical estimate for the critical wave steepness, ka, for wave
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instability can be determined for interfacial waves with a finite interfacial thickness
(Thorpe 1978) and for an infinitely thin interface (Holyer 1979). Both the wave
steepness ka and u/cp are measures of wave nonlinearity and are sometimes used
to assess whether convective instability will develop in surface and interfacial waves.
The minimum value of Ri g and the maximum value of u/cp are commonly used
as indicators of instability, but these metrics must be known over the spatial and
temporal extent of the event. Because these dynamic metrics may be very costly to
measure, the ideal predictive breaking criteria would be based on incident wave and
topographic length scales.

Many studies have used scales of the wave and topography to describe when
interfacial wave breaking occurs, often following the parameterization of surface
wave breaking. These parameterizations aim to provide some predictive capability for
wave breaking and are typically based on quantities such as length scales that are
easier to measure than Ri g(x, y, z, t) or u(x, y, z, t)/cp . Shoaling surface waves become
unstable when the amplitude scaled by the local depth reaches the constant value of
a/h= 0.39, with this ratio increasing significantly when the beach slope is greater than
1/40 (e.g. Dean & Dalrymple 1984). For a slope-shelf geometry, Helfrich & Melville
(1986) apply a similar criterion for interfacial waves and show that solitary waves
propagate up-slope without instability when a0/h1 � 0.3, where a0 is the amplitude of
the solitary wave and h1 is the local depth of the lower layer. Weak interfacial shear
instabilities occurred for 0.3 <a/h1 < 0.4, with strong convective overturning when
a/h1 � 0.4. For solitary waves shoaling on a uniform slope without a shelf present,
similar results are obtained, with breaking occurring for a/h1 � 0.3 (Helfrich 1992).
Vlasenko and Hutter (2002) suggest a bed slope-dependent breaking criterion for
solitary waves on slope-shelf bathymetry where a/h1 = 0.8◦/γ + 0.4, where γ is the
angle of the slope from the horizontal direction, based on quasi-two-layer numerical
simulations. Wave slope and bed slope have been shown to affect internal solitary
wave breaking on a slope as well (Nagashima 1971; Michallet & Ivey 1999), and an
internal Irribarren number comparing the wave steepness and the bed slope has been
used to distinguish the regimes when spilling, plunging and collapsing breaking of
solitary waves occur (Boegman et al. 2005).

While the parallel steady inviscid shear flow stability criterion of Ri g � 0.25 has
often been applied to internal wave flows, there is some question as to whether the
assumptions of parallel steady shear flow are valid. Furthermore, although Ri g � 0.25
is a necessary but insufficient condition for shear instability in a steady parallel
inviscid flow, a wide range of ocean models assume turbulence occurs wherever Ri g

falls below 0.25. The validity of the steady and uniform assumptions depend on how
the unsteadiness time scale λ/cp compares with the time scale of instability growth and
how the wavelength, λ compares with the spatial scale of the instability (e.g. Kao et al.
1985; Troy & Koseff 2005b). In a recent review paper, Helfrich & Melville (2006)
state that neither field observations nor lab experiments that have suggested that
interfacial waves may break through shear instability have had sufficient resolution
to determine the local Richardson number. To verify whether the shear stability
criterion is appropriate, the spatial and temporal resolution of density and velocity
measurements must be sufficient to capture the local minimum in Ri g .

Several methods have been used to measure Ri g directly. Kao et al. (1985) estimated
Ri g in a shoaling solitary wave by measuring the displacement of a column of
hydrogen bubbles to estimate the shear profile and found the minimum Ri g to be
near or below 0.25 for unstable cases, which was consistent with their KdV model
results. Fructus et al. (2009) measured the velocity in internal solitary waves and
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Figure 1. (a) A schematic of the tank and PIV/PLIF imaging system. (b) An aerial view of
camera set-up for simultaneous PIV/PLIF imaging. (c) Key wave and topography parameters.

paired that with a theoretical density field for the observed wave parameters so that
Ri g could be calculated. While this is an elegant solution for idealized conditions, the
theoretical density field cannot be calculated for the complex bathymetric interaction
in the wave-ridge case. Dalziel et al. (2007) have developed a system to obtain
two-dimensional simultaneous density and velocity measurements using synthetic
schlieren and PIV, stressing the need for simultaneous measurements in order to
capture key dynamics in nonlinear stratified flows. A sample calculation of Ri g(x, z)
in a solitary wave was presented by Dalziel et al. (2007). Combined PIV/PLIF has
been used by Pawlak & Armi (2000) and Zhu & Lawrence (2001) to measure the
local gradient Richardson number in two-layer shear flows. In this paper, we use
combined PIV/PLIF to obtain high-resolution measurements of the wave field.

2.4. Non-dimensionalization

The wave-ridge interaction of this study is controlled by 11 dimensional parameters:
layer depths h1 and h2, the height of the ridge h0, the standard deviation of the
Gaussian ridge σ , the height of the interface above the ridge hr , the wave amplitude
a, the wavenumber k, the interfacial thickness δ, the viscosity ν, the diffusivity of the
stratifying scalar κ and the reduced gravity g′ = 2g(ρ1 −ρ2)/(ρ1+ρ2)), where the length
scales are shown in figure 1(c). From these 11 parameters, 9 dimensionless groups
can be formed, including a Reynolds number Re = a2(g′/δ)1/2/ν, a Schmidt number
Sc = ν/κ and 7 length scale ratios: the wave steepness ka, scaled wavenumbers kδ

and kσ , scaled layer depths kh1 and kh2, ridge slope h0/2σ and a scaled amplitude
a/hr .

In this study, the most important parameters are thought to be the scaled amplitude
a/hr , the scaled wavelength kδ and the wave steepness ka. These three parameters as
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well as a Richardson number which can be estimated from the other dimensionless
parameters (see § 5.1) are used to study the role of shear and nonlinearity in wave
breaking at the ridge. The ridge slope may affect breaking behaviour (e.g. Vlasenko &
Hutter 2002), but this parameter is not varied in this study. Here, h0/2σ =0.4, which is
comparable to bathymetric slopes of 0.07–0.5 where enhanced diapychnal diffusivities
have been observed (Kunze & Sanford 1996; Toole et al. 1997). The parameter kσ

is varied, but this parameter is not thought to have a major impact on the flow
except perhaps in the knife-edge limit, when the flow is very long relative to the ridge
(kσ < 1). Low values of h0/2σ and kσ are limited by the length of the laboratory
facility. The Reynolds number may impact when separation over the ridge occurs
(see § 4.4). The Schmidt number is held constant.

3. Experimental methods
3.1. Facility

Experiments were conducted in a tank 30 cm wide, 60 cm tall, 488 cm long using
a semicylindrical wavemaker at one end to generate interfacial waves. Trains of
progressive interfacial waves were forced over a Gaussian ridge with a standard
deviation of σ = 25 cm, and with height h0 = 20 cm (see figure 1a). The stratification is
two-layer where h1∞ and h2 are the lower and upper layer thicknesses. The interfacial
thickness was δ = 1.5 ± 0.1 cm at the start of each experiment. A conductivity-
temperature probe mounted on a vertical traverse is used to obtain density profiles
to verify the initial stratification. The total water depth h1∞ + h2 was kept constant
at 56 cm, while the height of the interface above the ridge hr was varied between 3
and 10 cm by adjusting h1∞. The density difference between the two layers was varied
from 	ρ/ρ0 = 2(ρ1 − ρ2)/(ρ1 + ρ2) = 1 % to 9 %. The tank was stratified using two
salt solutions. In quantitative imaging experiments, a dilute isopropyl alcohol solution
was used in place of salt in the upper layer.

Interfacial waves of varied amplitude a∞ and frequency ω can be generated.
The wavemaker forcing frequency ω determines the wavenumber k∞ in a given
stratification, according to the two-layer thin-interface dispersion relation:

ω2 = gk
2(ρ1 − ρ2)

(ρ1 + ρ2)

1

coth(kh1) + coth(kh2)
, (3.1)

where ρ1 and ρ2 are the lower and upper layer densities and, away from the ridge.
Additional details of the facility and the imaging set-up are described in Troy &
Koseff (2005a).

3.2. Measurement techniques

The measurement techniques used in these experiments included conductivity and
temperature profiles to determine the initial stratification, planar laser-induced
fluorescence to provide two-dimensional density fields, and PIV to measure velocity
fields. The imaging set-up is shown in figures 1(a) and 1(b). For the simultaneous
PIV/PLIF measurements, a swept-beam Argon-ion system is used (e.g. Crimaldi &
Koseff 2001).

3.2.1. Scalar fields

PLIF has been used in a wide range of flows to measure scalar concentration fields
(Crimaldi 2008). In these experiments, a laser fluorescent dye (Rhodamine 6G) is
added to the lower layer at a concentration of 50–80ppb. The dye in a portion of the
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x–z plane is illuminated using the scanning mirror and Argon-ion laser (figure 1a).
Rhodamine 6G and salt have similar Schmidt numbers, Sc = ν/κ , 600–1200 and
700, respectively, and thus are expected to diffuse similarly (Rehmann 1996). Image
pixel intensity can be converted to dye concentration and subsequently to density
after appropriate calibration and correction (Crimaldi & Koseff 2001; Troy & Koseff
2005a). Images were taken at 7.5 or 15 Hz using a 1024 × 1024 pixel, 12-bit grey
scale CCD camera (Silicon Mountain Designs), to give a typical spatial resolution of
0.2 mm (approximately the thickness of the light sheet).

The interfacial height was determined by fitting a hyperbolic tangent function to
the intensity of each image column where the midpoint of the hyperbolic tangent
profile is taken to be the interfacial height. This method effectively provides a wave
gauge for locations visible in the image.

3.2.2. Velocity fields

PIV is used to obtain two-dimensional velocity data in the wave field. The Argon-
ion laser is used to generate two successive light sheets, during which images of the
particle field are captured using a 12-bit 2048 × 2048 pixel CCD camera (RedLake).
MatPIV, developed by J. S. Sveen, in conjunction with the intensity capping method
of Shavit, Lowe & Steinbuck (2007) is used to process the PIV images. A normalized
median-residual filter is used to identify errant velocity vectors (Westerweel & Scarano
2005). Using PIV, the spatial resolution of the velocity field is 1 mm, with accuracy of
±0.4 mm.

Simultaneous measurements of velocity and density were obtained using a
PIV/PLIF system with a single laser, a scanning mirror and two cameras (Variano &
Cowen 2007). During the first sweep of the laser, a PIV image was obtained. During
the second sweep, a PIV image and a PLIF image were taken simultaneously.
Typically, the two PIV images were separated by 3–20 ms, depending on the flow
velocity, the three-dimensionality of the flow and the size of the field of view. Band-
pass optical filters were used to allow the PIV camera to image the particles while
blocking the signal from the dye and to allow the PLIF camera to image the dye
field while excluding emissions from the particles. Simultaneous PIV/PLIF systems
have been used in density-stratified flows to study the dynamics and entrainment of
buoyant plumes (Law, Wang & Herlina 2003; Diez, Bernal & Faeth 2005; Ai, Law &
Yu 2006). When strong density gradients are present in the flow, there are some
challenges to implementing PIV/PLIF. Two salt-stratified layers will have different
indices of refraction, which causes light to be distorted as it passes through density
gradients in the fluid. This phenomenon can distort the appearance of the interface
and can severely cloud particle and dye images of turbulent flows. In order to use
PIV/PLIF in stratified flows, the index of refraction can be matched between the
two layers by using a dilute solution of isopropyl alcohol in the upper layer and
a salt solution in the lower layer (Daviero, Roberts & Maile 2001). For a density
difference of 	ρ/ρ0 = 1 % between the layers, the index of refraction of both layers
is n=1.3346.

4. Results
The results from two sets of experiments are discussed in this section. In the first

set of experiments, a qualitative breaking classification is developed for wave-ridge
breaking events (§ 4.1), and scales of the topography and the incident wave are used
to parameterize when breaking occurs (§ 4.2). The second set of experiments narrows
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the focus to look just at waves on the threshold of instability. The amplitude of
the incident wave is adjusted to find the lowest amplitude for which overturning is
observed at the interface. Using simultaneous measurements of velocity and density,
§ 4.3 examines whether the gradient Richardson number is a good indicator of when
this onset of instability occurs.

The amplitude a is measured from fluctuations of the interfacial height in PLIF
images. The wavenumber k is computed from the two-layer dispersion relation
(defined in (3.1)) for a given forcing frequency of the wavemaker ω. The subscript ∞
indicates the quantity is measured or calculated just upstream of the ridge. Where k,
a and h1 appear without subscripts, the quantities are evaluated over the ridge crest.

As waves propagate up the ridge into more shallow water, the wave steepness ka

tends to increase if wave energy is conserved. As the depth decreases, flow in the
lower layer is constricted to a smaller vertical extent, so the magnitude of the velocity
in the lower layer increases. Through some combination of increased wave steepness
(i.e. increased velocity relative to the wave speed) and increased shear across the
interface, waves can become unstable and break, leading to mixing. The mechanism
for instability in an interfacial wave-ridge interaction is the focus of this study.

4.1. Breaking classification

In the breaking classification experiments, a range of waves were generated by
varying the wavelength (λ∞ = 25–300 cm), amplitude (a∞ = 0.5–6 cm) and the height
of the interface over the ridge (hr = 3–10 cm), to vary dimensionless parameters
ka, kδ and a/hr . For the same values of ka, kδ and a/hr , the Reynolds number
was varied by a factor of 3 by changing the density difference between the layers
(	ρ/ρ0 = 1 %, 3 %, 9 %).

Three primary types of breaking events were observed: backward breaking, forward
plunging breaking and forward Kelvin–Helmholtz breaking, and examples of each
breaking type are shown in figure 2. If no visible overturning was observed, waves
were classified as not breaking. Backward breaking involves a counter-clockwise,
shear instability in the lee of the wave crest as the wave passes over the crest of
the ridge. Forward plunging breaking is characterized by a steepening of the front
wave face leading to gravitational instability, qualitatively similar to the breaking
of a plunging surface wave. Forward Kelvin–Helmholtz breaking involved the same
convective, plunging mechanism as forward plunging breaking, but in this case,
Kelvin–Helmholtz-like shear instability developed between the plunging wave face
and the ridge, as strong flow rushed down slope. Qualitatively, the most vigorous
wave-ridge interactions seem to result from this combination of shear and convective
instability.

One striking result of the classification process was that it was not possible to
classify breaking events as simply shear or convection induced breaking. Figure 3
clearly illustrates a wave breaking event with elements of convective as well as shear
instability. This frame from the forward Kelvin–Helmholtz breaking event illustrated
in figure 2(c) shows the wave face plunging downwards at the left edge of the
frame, with intertwined anchor-like signatures of Rayleigh–Taylor-like gravitational
instability. In the centre of the image, Kelvin–Helmholtz-like shear instabilities develop
due to strong, down slope flow as the trough of the wave passes over the ridge crest,
and the crest of the wave approaches from the left. Because of the mixed nature of
the wave instability in many of the observed breaking events, established instability
criteria for shear or convective regimes become difficult to apply.
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Figure 2. PLIF images showing breaking types: backward breaking (a), forward plunging
breaking (b) and forward Kelvin–Helmholtz breaking (c). Waves propagate left to right. The
dark region at the bottom of images is the ridge.

1 cm

Figure 3. Interaction of shear and convection in wave instability. Reprinted with permission
from (Hult, Troy & Koseff 2006). Copyright 2006, American Institute of Physics.

4.2. Parameterization of breaking types

The breaking mechanism can be predicted, to a degree, using scales of the incident
wave and topography. The relevant scales are the incident wave amplitude (a∞), the
length scale of the wave (k−1

∞ ), the height of the interface above the ridge crest (hr )
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Figure 4. Breaking classification for periodic, interfacial waves at a Gaussian ridge. Solid line
(-) shows the transition to breaking and dotted lines, (..) suggest breaking regimes. Symbols
indicate breaking type: forward Kelvin–Helmholtz breaking (�), forward plunging breaking
(�), backward breaking (�), not breaking (×).

and the interface thickness (δ). Figure 4 shows that the breaking regimes can be
parameterized by the scaled amplitude a∞/hr and the scaled wavelength k∞δ. The
breaking transition curve (solid) and the breaking type curves (dotted) are fit to
minimize the root mean square distance of points on the wrong side of each curve.
The solid curve provides an empirical breaking criterion defined by a∞/hr and k∞δ

for the range of parameters tested. In the limit of very long or very short waves,
or when the topography is exceedingly steep, this breaking criterion may not hold.
Dotted lines are intended to suggest regions where a given breaking type tends to
occur. For a constant value of k∞δ, as the amplitude a∞/hr was increased waves
tended to first break backwards, then forwards. Waves may be unstable to backward
breaking while stable to forward breaking due to the effects of interfacial shear.
This is because as a wave shoals, the increasing interfacial shear at the crest is
opposed by the steepening of the wave face. When the wave reaches the crest of
the ridge, however, wave steepening ceases and the interfacial shear can cause the
wave to become unstable. Forward Kelvin–Helmholtz breaking tended to occur when
a∞/hr was high and the scaled wavenumber was low, i.e. when waves were steep
and long relative to the interface thickness. For very short waves (k∞δ > 0.3), wave
breaking was observed, but the specific breaking mechanisms seemed to be heavily
dependent on perturbations from previous wave-ridge interactions and events were
not very repeatable. The results of this parameterization do not vary significantly
when the Reynolds number was increased by a factor of 3 from Re = 200–7000 to
Re = 600–20 000 for the same values of a∞/hr and k∞δ.
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Experiment f (Hz) λ∞ (cm) a∞ (cm) Stability

2 0.0375 295 0.76 Stable
3 0.0375 295 0.83 Overturing
4 0.0375 295 0.72 Stable
5 0.050 212 1.26 Stable
6 0.050 212 1.43 Stable
7 0.050 212 1.51 Borderline
8 0.050 212 1.60 Overturning
9 0.075 123 1.52 Borderline

10 0.075 123 1.66 Overturning
11 0.075 123 1.37 Stable
12 0.100 76 1.95 Stable
13 0.100 76 2.17 Borderline
14 0.100 76 2.39 Overturning
15 0.125 50 2.65 Stable
16 0.125 50 2.89 Borderline
17 0.125 50 3.13 Overturning

Table 1. Parameters for Ri g experiments.

4.3. Shear instability criterion

This section takes a closer look at the flow conditions in waves at the threshold of
initial instability. The key questions are What is the mechanism that initially leads
to instability as the wave steepness is increased? and Is there a dynamic criterion
to predict when this instability occurs in the wave-ridge case? To investigate the
utility of the Ri g > 0.25 stability criteria for this case of interfacial waves breaking at
a ridge, simultaneous PIV/PLIF was used to determine the minimum value of Ri g

that occurs at the onset of wave instability. Waves of varied wavenumber k∞ were
forced over the ridge and the wave amplitude was increased until overturning was
observed (see table 1). For all Ri g experiments, hr = 5 cm and 	ρ/ρ0 = 1 %. Each
experimental run contained five consecutive periodic waves of constant amplitude.
Between experimental runs, the two-layer stratification was sharpened.

Figure 5 shows the evolution of the interface for several waves events at the
threshold of instability with varied wavelength. The contours of the mean density
(ρ =999.7 kg m−3) illustrate fluctuations of the density interface as a wave passes
over the ridge crest. As t/T increases, first the trough of the wave passes over the
ridge at t/T ≈ 0.4, followed by the crest of the wave at t/T ≈ 0.6–0.8. The breaking
events shown in figures 5(c), 5(d ) and 5(e), are qualitatively similar to the event shown
in figure 2(a). In these events, the wave steepens as it passes over the ridge crest and
then overturns backwards in the lee of the wave crest. In figures 5(a) and 5(b), when
the waves are long relative to the interface thickness and the ridge, (k∞δ < 0.06),
incipient overturning is observed for much less steep waves. For these two cases, flow
separation at the bed may provide an alternative mechanism contributing to initial
instability and this mechanism is discussed in § 4.4.

4.3.1. Calculating Ri g

From density and velocity profiles, Ri g is calculated as a function of x, z and
time. Figure 6 shows sample profiles of N2 and (du/dz)2 and the evolution of Ri g

in the column of water directly over the ridge crest throughout the wave period.
In a two-layer flow, overturning must occur in the density interface in order to mix
the stratifying scalar, and thus we are interested in whether there is a critical value
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for Ri g within the interfacial region for instability. The interfacial region is defined
here based on distance from the mean density value contour. Away from the density
interface, noise in the density measurements tends to dominate the calculated values
of Ri g . White patches below the interface in figure 6 are due to dye irregularities in
the lower layer which cause non-physical negative values of Ri g . The thickness of the
region about the mid-density contour was chosen to be as large as possible without
including the regions above and below the density interface, where noise dominates
the measured density gradients. For these experiments, the interfacial region is defined
to be 3 mm below to 5 mm above the mean density contour, which typically contains
80 % of the density variation. The sensitivity of the results to this definition was less
than measurement uncertainty (Ri g ± 0.1 within the interface, Ri g ± 1–10 elsewhere).

The profiles shown in figure 6(a) show that the magnitude of the stratification N2

stays approximately constant over the wave period, while the magnitude of the shear,
(du/dz)2, varies significantly, with peak values at the wave crest (figure 6a, image
(iv)) and trough (figure 6a, image (ii)). These observations are typical of the shoaling
waves observed. In figure 6(b), patches of low Ri g occur in the interfacial region when
the crest and trough of the wave pass over the ridge crest.

4.3.2. Evolution of Ri g

Figure 7 shows a time series of the minimum Ri g in the water column directly
above the ridge crest as the trough and then the crest of the wave pass by. For all
wavelengths, two local minima in Ri g are present: during the trough and crest of
the wave when shear across the interface is highest. The minimum of Ri g during
the trough typically persists longer, although overturning occurred as the crest of the
wave passed the ridge.

The minimum value of Ri g within the density interface is plotted in figure 8
for each wave. A transition occurs from stable to overturning when (du/dz)2 is
of the order of N2, i.e. 0.2 <Ri g,min < 0.4, with measurement uncertainty of ±0.1.
Possible factors impacting the variability of the critical Ri g are discussed later in this
section. Once overturning occurs, Ri g may be negative. Note, the values of Ri g,min in
figure 8 are typically smaller than the minimum value over the wave period shown in
figure 7, where Ri g,min(t/T ) is averaged over five wave events of equivalent a∞/hr .
There is a discrepancy between local and phase averaged data because the minimum
value of Ri g during the wave period does not always occur at precisely the same
phase of the wave. Taking the minimum value in a noisy data set will likely bias the
resulting critical value to be too low, but within the uncertainty indicated.

At first glance, figure 8 suggests Ri g,min = 0.25 provides a reasonably good cutoff for
when interfacial waves first become unstable. However, the minimum values of Ri g

shown in figure 8 do not always occur during the crest of the wave, where overturning
is observed. Because the ridge acts to vertically constrain flow in the lower layer to
a greater extent while the trough passes than when the crest passes, the minimum
Ri g is expected to occur during the trough. If shear alone causes the instability, we
would expect the instability to develop in the trough of the wave. Since overturning
is observed at the crest of the wave, shear must not be the only factor, suggesting
convective acceleration may also play a role in the wave instability.

Both shear and convection appear to contribute to initial instability at the wave
crest, as the wave steepness is increased. The wave amplitude scaled by the minimum
lower layer depth over the ridge a/hr provides a measure of the wave nonlinearity,
and in the limit of highly nonlinear shoaling waves when a/hr is large, convective
instability is expected. Figure 9 indicates that while low Ri g is often present for waves
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Figure 7. Minimum value of Ri g in the water column, directly over the ridge crest over
the wave period. Here, ‘o’ indicates overturning, ‘b’ is borderline and ‘s ’ is stable. For (a)
k∞δ = 0.034, (b) k∞δ = 0.048, (c) k∞δ = 0.082, (d ) k∞δ = 0.132 and (e) k∞δ =0.202. The phase
t/T corresponds with that at x = 0 in figure 5. At t/T =0, the interface deflection is zero, then
the wave trough (0 � t/T � 0.5) passes followed by the crest (0.5 � t/T � 1).

at the onset of instability, high scaled amplitude a/hr is also present. Note, in figure 9,
a is the local amplitude over the ridge crest. The results in figure 9 the critical value
of Ri g for breaking is sensitive to the local wave nonlinearity a/hr . The results of
Troy & Koseff (2005b) indicate that in the absence of a shoaling slope, the breaking
transition occurs at Ri g � 0.1, for waves of comparable k∞δ and a∞/hr that were
forced to break in a channel contraction. In this study, the wave nonlinearity a/hr

is increased, and this seems to increase the critical Ri g from 0.1. When a/hr > 0.4,
the steady parallel shear stability criterion of Ri g > 0.25 clearly does not hold. This
supports the notion that the instability is initiated by a combination of shear and
convection in these wave-ridge interactions. Separation induced breaking events mark
another topographic process that can lead to overturning when Ri g > 0.25.
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separation breaking (�) and backward breaking (�). If Ri g < 0, Ri g is plotted at 0.

For waves shorter relative to the topography (higher k∞δ), the critical waves are
steeper, thus the interaction with the ridge is more nonlinear. The assumptions of
parallel and steady flow required for the Ri g,min > 0.25 stability criterion become
less appropriate as k∞δ increases. Figure 10 shows a measure of nonlinearity: the
maximum values of u/c and w/c over the wave period where c is the phase speed
of the wave over the ridge, c =ω/k. Note that while u/cmax is relatively constant for
the range of k∞δ tested, the vertical velocity w/cmax varies with k∞δ for near-breaking
waves. For k∞δ > 0.2, w/cmax is of the same magnitude as u/cmax . Larger convective
accelerations for k∞δ = 0.20 may lead to overturning at slightly higher values of Ri g

in figure 8, following from the results of Fringer & Street (2003) which found that as
u/c → 1 for shorter waves, stability is governed by convective processes rather than
interfacial shear. Note that the breaking criterion of u/c > 0.7 discussed by Sveen
et al. (2002) for internal solitary waves at a ridge does not predict breaking in this
periodic wave case.

Another factor that may increase scatter in the results in figure 8 for shorter waves
(higher k∞δ) is the role of random perturbations to the initial interface. For shorter
waves relative to the ridge, interfacial disturbances have less time to propagate from
the breaking location over one wave period, making shorter waves more sensitive to
previous events. Interface disturbances from previous breaking events can be seen in
figures 5(d ) and 5(e), and may contribute to instability of the current wave.

4.4. Separation of wave-induced boundary layer

When the wavelength is long relative to the ridge (k∞δ � 0.06), an alternative
mechanism may lead to instability of the interface. When the scaled amplitude
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a∞/hr is increased, the first instance of overturning at the interface may be caused
by separation of the wave flow over the ridge. This phenomenon of separation at
the bed under a passing internal wave has been observed in numerical simulations
(Diamessis & Redekopp 2006) and in experiments in the laboratory (Carr & Davies
2006; Carr, Davies & Shivaram 2008). Thorpe (1998) proposed a separation vortex
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Figure 11. Black lines show instantaneous streamlines based on the measured velocity field
in the lower layer. In (a), k∞δ = 0.048, a∞/hr =0.34. In (b), k∞δ = 0.082, a∞/hr = 0.323.

would develop beneath a shoaling internal solitary wave, and such vortices have been
observed in the ocean (Bogucki, Dickey & Redekopp 1997) and in the lab (Thorpe
1998). As the trough of the wave passes over the ridge, strong flow to the left in
the lower layer tends to detach from the ridge and a separation vortex is formed
just upstream of the ridge crest. Instantaneous streamlines in figure 11(a), images
(i) and (ii) show the development of this separation vortex. As the crest of the wave
passes the ridge, the vortex is lifted from the bed and is advected downstream in
images (iii) and (iv), unlike in previous solitary wave studies such as Boegman &
Ivey (2009). This vortex coincides with an interfacial disturbance which eventually
overturns. This lifted vortex may help to explain why the wave crest becomes unstable
when Ri g > 0.25, as shown in figures 7(a) and 7(b). When the wavelength is shorter
relative to the topography, i.e. k∞σ � 1, this separation vortex is not observed, as
shown in figure 11(b). Note, the streamlines in figure 11 are instantaneous and in a
highly unsteady flow such as this, particles in the flow will not follow streamlines.
In this complex wave-bathymetric interaction, it is difficult to tease out exactly the
contributions of each type of instability observed. As the wave amplitude is increased,
the wave breaking intensifies and it becomes increasingly difficult to distinguish the
role of separation at the bed and instability at the interface. Figure 12 shows the
velocity field during a plunging wave event, with vortices developing in the lower
layer.

Diamessis & Redekopp (2006) argue that if the Reynolds number and amplitude
are sufficiently large and an adverse pressure gradient is applied over a long enough
time, the separation bubble under the wave can become unstable and then periodically
eject vortices into the water column. In this study, no vortices were observed to be
ejected from the separation bubble, but in the long wave limit, this may be possible.
Unlike previous solitary wave studies, though, the separation vortex itself appears
to be lifted into the water column here. Both the coherence of the lifted separation
vortex observed in this study and the tendency for separation bubbles to eject vortices
are sensitive to Re. Therefore, the impact of such vortices on interfacial stability will
depend on Re. While this bed separation may not lead directly to the instability of
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Figure 12. Velocity vectors overlayed on PLIF image for a plunging wave. For this case,
k∞δ =0.082, a∞/hr = 0.70.

the wave face, the vortex may enhance resuspension of bed sediments under the wave,
as suggested by Diamessis & Redekopp (2006) and Boegman & Ivey (2009).

5. Discussion
It is clear that interfacial shear plays an important role in the wave breaking

events in this study. Although an Ri g criterion is arguably an insufficient tool to
assess stability in an unsteady, nonlinear flow such as this, it is commonly applied
to internal wave flows and mixing parameterizations in stratified flows. The shear
instability metric Ri g can be very difficult to measure, however, even under idealized
laboratory conditions. In § 5.1, a simple model is presented to estimate the expected
Ri g using only the wave parameters and topography. The model is compared with
experimental results, and then used to assess various predictive breaking criteria.
Whether or not these predictive criteria can be used to distinguish the wave breaking
mechanism is also discussed. In § 5.2, the role of unsteadiness is discussed.

5.1. Modified Ri model

A simple linear model for wave flow over the ridge can be developed by modifying
the theoretical wave Richardson number Riw analysis of Troy & Koseff (2005b) to
include the effects of finite layer depths. Troy and Koseff form the wave Richardson
number in terms of a scaled amplitude and scaled wavenumber for a low-mode
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progressive, interfacial wave in two deep layers:

Riw ≡ N2

∣
∣ ∂U

∂z

∣
∣
2
|z=o,x=crest/trough, (5.1)

Riw �
g(ρ1 − ρ2)/(2δ/5.3)

(ρ0)((	u)/(2δ/5.3))2
�

kδ

5.3(ka)2
, (5.2)

where the constant 5.3 arises from the definition of the interfacial thickness. The
approximation for 	u across the interface can be modified to include the effects
of variable depth layers, starting from the two-layer lowest mode interfacial wave
solution for the horizontal velocity within each layer (e.g. Phillips 1966):

u1(x, z, t) = aω
cosh(k(z + h1))

sinh(kh1)
cos(kx − ωt), (5.3)

u2(x, z, t) = −aω
cosh(k(z − h2))

sinh(kh2)
cos(kx − ωt). (5.4)

The velocity maximum occurs at the interface (z = 0) during the crest and the trough,
so the maximum velocity difference across the interface is

	umax = aω(coth(kh1) + coth(kh2)). (5.5)

The two-layer finite depth dispersion relation (defined in (3.1)) is substituted to obtain
a modified wave Richardson number for the case of finite layer depths:

Ri �
kδ

2.65(ka)2
1

(coth(kh1) + coth(kh2))
. (5.6)

This modified wave Richardson number provides an estimate of the minimum
Ri g for periodic interfacial waves in terms of the wave steepness ka, the scaled
wavenumber kδ and the scaled layer depths kh1 and kh2. For the deep water case
when kh1 	 1 and kh2 	 1, this expression converges to the result in (5.2). This model
does not include the effects of abrupt changes in depth, boundary layer effects, or
finite amplitude effects on the velocity field near the interface. To this effect, the
model assumes the peak shear occurs at the middle of the density interface where
N2 is maximum. At the limit where the wave steepness is increased to the point
where wave-ridge interactions result in overturning, this model will not accurately
predict Ri.

A time-varying wave Richardson number can be calculated by preserving the time
variation in the velocity

	ux=const = aω (coth(kh1) + coth(kh2)) cos(ωt), (5.7)

and then which gives a time-varying wave Richardson number

Ri(t) �
kδ

2.65(ak)2 (coth(kh1) + coth(kh2)) cos2(ωt)
. (5.8)

Again, this time-varying estimate does not include the effects of steep topography,
boundary layers or finite amplitude waves.

5.1.1. Comparison of data and model results

Figure 13 compares the measured minimum Ri g with the modelled Ri(t) from
(5.8). The expression for Ri(t) in (5.8) does not include finite amplitude effects on the
velocity field over the ridge, which leads to the difference in the magnitude of Ri g
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Figure 13. Ri(t), directly over the ridge crest. Experimental data (—) and the Ri(t) theory
(.-.). Here, hr/δ = 3.3.

between the trough and the crest in the experimental data. For the longest waves
(k∞δ < 0.06), the model sharply overpredicts the minimum Ri g during the trough of
the wave (0 � t/T � 0.5). For shorter waves, the agreement between the model and the
observations is better. Generally, the measured data indicate the flow over the wave
period is noticeably more complex than the model predicts. Despite variation, the
results in (5.8) suggest that if the wavelength, amplitude, stratification and topography
are known for a near-critical progressive periodic interfacial wave, the minimum Ri g

can be predicted to within a factor of 2 by this model for waves where flow separation
does not occur.

5.1.2. Comparison of breaking criteria

Two main breaking criteria have been presented in this study: an empirical breaking
condition based on incident wave and topographic scales (figure 4), and a Ri g

breaking condition. These two breaking criteria are not independent. The empirical
shoaling criterion simply indicates when the transition to breaking was observed in the
experiments, without regard to the particular breaking mechanism. Whereas, an Ri g

condition indicates when shear may cause a flow to become unstable. The relevance
of these two criteria depend on the particular flow under consideration, as there are
cases when each criterion is more appropriate. For example, a shoaling criterion based
on a changing depth is not relevant to periodic interfacial waves passing through a
contraction in the channel width break, but waves did break at Ri g ≈ 0.1 (Troy &
Koseff 2005b). On the other hand, surface waves at a beach are unlikely to break due
to interfacial shear at the air–water interface, but breaking criteria based on a/h have
been widely validated for this case. Figure 9 also highlights the relative importance
of shear and wave nonlinearity.

To compare the predictive capability of the empirical shoaling criterion shown
in figure 4 and an Ri g criterion for the waves of this study, both criteria were
rewritten in terms of incident wave parameters (k∞, a∞) and scales of the bathymetry
and stratification (h1, h2, hr , δ). Figure 14 shows how these two criteria compare
for the deep water waves of Troy & Koseff (2005b) in figure 14(a) as well as for
two lower layer depths over the ridge shown in figures 14(b) and 14(c). The model
in (5.6) is used to find the critical wave steepness ka associated with Ri g =0.25.
Because the wave Richardson model requires a constant of proportionality related to



The breaking of interfacial waves at a ridge 65

0 0.1 0.2

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

(kδ)∞

0 0.1 0.2

(kδ)∞

0 0.1 0.2

(kδ)∞

h1/δ = 17.0 h1/δ = 5.8 h1/δ = 3.3(a) (b) (c)
(k

a)
∞

Figure 14. Three cases comparing the empirical shoaling criterion from (5.9) (—), and
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and Koseff (2005), + indicating waves at the onset of instability. Two ridge cases are shown:
in (b) h1 = 10cm over the ridge and in (c) h1 = 6cm. For (b) and (c), σ = 25 cm. Symbols in
(b) and (c) indicate breaking type: forward Kelvin–Helmholtz breaking (�), forward plunging
breaking (� ), backward breaking (�), not breaking (x).

the definition of the interfacial thickness (Troy & Koseff 2005b), two estimates for
the Ri g = 0.25 shear criterion are shown: ka = (8kδ/5.3)1/2(coth(kh1) + coth(kh2)) and
ka = (4kδ)1/2(coth(kh1) + coth(kh2)). For simplicity, conservation of wave energy and
linear shoaling is assumed to relate k and a over the ridge to incident wave values
k∞ and a∞. The empirical shoaling criterion corresponds to the curve in figure 4 that
separates breaking from non-breaking waves and is a function of k∞δ and a∞/hr . It
can be rewritten as

(ka)∞ = 0.78(k∞δ)2
hr

δ
+ 0.38(k∞δ)

hr

δ
. (5.9)

From figure 14, it can then be determined which breaking criterion will be exceeded
first as the wave steepness (ka) is increased, using only scales of the incident wave,
topography and stratification. Figure 14 is designed to show how these criteria can
be used to predict breaking behaviour, so the data and criteria are plotted in terms
of incident wave scales.

For the deep water case in figure 14(a), the shear criterion will be exceeded
before the effect of the bottom becomes important, making the empirical shoaling
criterion irrelevant. This is consistent with the findings of Troy & Koseff (2005b) who
observed waves breaking through shear instability at the wave crest and trough as
they steepened when passing through a horizontal contraction in the tank. For the
two ridge cases in figures 14(b) and 14(c), the shear criterion curves and the empirical
shoaling curve fall within the same region of the parameter space. This suggests that
for the ridge cases, the shear criterion and the empirical shoaling criterion provide
similar predictive capability for the transition to breaking.

Although figure 7 indicates that the agreement between the estimated Ri g and
the experimental data is not perfect, the estimated Ri g is sufficient to show that for
the ridge cases figures 14(b) and 14(c), the empirical shoaling criterion is roughly a
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curve of constant Ri g . While unsteadiness and wave nonlinearity can alter the critical
value of Ri g , Fringer & Street (2003) suggest that an unsteady wave flow breaking
at a constant Ri g can indicate that shear is responsible for wave breaking. For the
wave-ridge interactions in this study, low values of Ri g are correlated with high values
of a/hr , as shown in figure 9, although this is not universally true. A correlation is
also seen between Ri g and the empirical shoaling criterion because the empirical
shoaling criterion depends strongly on a/hr over the ridge (figure 4). Because low
Ri g and high-wave nonlinearity are correlated for the parameters used in this study,
it is difficult to distinguish the impact of interfacial shear from the impact of wave
steepness on the initial wave instability.

5.2. Unsteadiness

In time-varying flows, critical shear must be applied for sufficient time in order
for shear instability to develop (Troy & Koseff 2005b). If the time the wave shear is
applied, τw , is long relative to the time scale for instability growth (τg), the unsteadiness
of the flow is not likely to restrict instability growth. Kao et al. (1985) used a simple
scaling to compare these time scales. The instability growth rate is assumed to be
linearly proportional to the maximum shear, so the ratio of time scales is

τw

τg

�
ω−1

(∂u/∂zmax)−1
�

	umax

(ωδ)
. (5.10)

If 	umax is calculated from (5.7), under these assumptions, the time scale ratio is
3 <τw/τg < 9 for all waves in this study, suggesting that shear instability growth
may be limited by the effects of unsteadiness. It has been shown, however, that the
instability growth rate is not simply proportional to the maximum shear, but instead
is a function of Ri as well as the length scale of the perturbation to the flow, for
parallel inviscid steady shear flow (Hazel 1972). Following Troy & Koseff’s (2005b)
application of Hazel’s result, the instability growth rate can be modelled as

σi =
2.65	umax

δ
(−0.8Ri 0 + 0.2), (5.11)

and then the growth can be integrated over the time subcritical shear is present.
This is the growth rate for the most unstable perturbation, although in this case,
the length scale of the ridge may impact the wavelength of the instability. For the
waves at the threshold of instability discussed in § 4.3, the minimum values of Ri g are
not substantially below Ri g = 1/4. Therefore, the growth rates calculated using (5.11)
for waves on the threshold of instability are near zero. If a near-zero growth rate is
used for τ−1

g , the wave time scale is much shorter than the instability growth rate.
This analysis would then suggest that there is not sufficient time for an instability
to develop in cases where overturning was indeed experimentally observed. As stated
earlier, shear and convection both seem to have a role in the initial instability. Because
of this, the instability growth rates for parallel inviscid steady shear flow may not
in fact be appropriate. While two imperfect growth rate estimates suggest that the
unsteadiness of the wave flow may inhibit instability development, the exact growth
rate for this case is unknown.

The unsteadiness of the wave flow can also inhibit the development of a
gravitational instability, as illustrated in figure 15. Some of the larger amplitude
wave breaking events appear to involve gravitational instability, such as figure 2(b).
As the wave face steepens and the crest of the wave accelerates out ahead of the wave,
the overhanging mass of denser water is gravitationally unstable. At this point, the
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(a) (b) (c) (d)

Figure 15. PLIF images from a wave breaking event k∞δ = 0.23.

denser fluid may plunge downwards, resulting in turbulence and mixing. In this case,
the relevant time scales are the wave time scale and the growth rate for gravitational
instability. If the wave phase changes before the dense fluid can plunge downwards,
the wave may not become unstable. Often the criterion of u/c > 1 is used to determine
whether convective breaking is occurring. There are, however, cases where the flow
is gravitationally unstable in one instant, but this does not lead directly to instability
and convective breaking, as shown in figure 15. In this wave event, there are clearly
instantaneous unstable density profiles and locations where the local velocity exceeds
the phase speed of the wave, but the wave face ultimately does not plunge downwards.
Although conditions for convective instability are not investigated in great detail in
this study, observations indicate that u/c > 1 is not a sufficient criterion for instability
in this case.

6. Conclusions
Laboratory experiments have been used to investigate the breaking of progressive

periodic interfacial waves at a Gaussian ridge. The results clearly indicated that both
shear and convection played a role in the breaking events. Because both shear and
convective processes contributed to wave breaking, neither a shear instability criterion
nor a convective instability criterion such as u/c > 1 was appropriate for all cases
observed. Three types of breaking were observed: backward breaking, convective
forward plunging breaking and a mixed convective-shear breaking, referred to as
forward Kelvin–Helmholtz breaking. The breaking types were parameterized by a
scaled wave amplitude a∞/hr and a scaled wavenumber k∞δ, and an empirical
condition based on these two parameters was used to determine a breaking transition
criterion for the range of parameters in this study.

For waves at the threshold of instability, the minimum local gradient Richardson
number was 0.2 <Ri g < 0.4, thus the canonical criterion of Ri g � 0.25 did not predict
breaking in all cases. For shorter waves (k∞δ > 0.06), the initial instability developed
at the wave crest, leading to backward overturning. For longer waves (k∞δ < 0.06), a
mechanism related to separation of flow over the ridge seemed to lead to the initial
interfacial instability. This alternate breaking mechanism may be sensitive to the
Reynolds number and the ridge slope h0/2σ .

Even under these idealized laboratory conditions, measuring Ri g is very difficult. A
simplified model is developed to estimate the Richardson number using only scales of
the incident wave (a∞, k∞), background stratification and topography (δ, h2, h1, hr ).
Despite the limitations of a constant Ri g breaking criterion, this rough estimate of Ri g

provides an indication of where in the parameter space interfacial shear is likely to be
important. The model also indicates that the empirical shoaling criterion from § 4.1 is
roughly equivalent to a curve of constant Ri g for the ridge cases, which is consistent
with the idea that both interfacial shear and shoaling processes may contribute to
wave breaking. For deeper or more shallow waves relative to the topography, either
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shear or nonlinear wave steepening may dominate the breaking process. The model
could be applied to a particular case to estimate if an incident wave is likely to break
and which processes may be important. However, even if the model can accurately
predict that the minimum Richardson number for a given flow is, say, Ri g = 0.2, this
is not sufficient to determine whether or not the wave will break, due to the effects of
unsteadiness and wave nonlinearity.

It is important to note that the canonical Richardson number criterion of Ri g = 0.25
is not, on its own, sufficient for determining when instability will occur in interfacial
wave flows. For increasingly nonlinear waves, the assumptions of this criterion of
steady, parallel and uniform flow become less and less appropriate, and the stability
boundaries of the flow may be affected. For example, oscillatory shear can have
a stabilizing or destabilizing effect on near-critical baroclinic flows (Pedlosky &
Thomson 2003). The results of Fringer & Street (2003), Troy & Koseff (2005b) and
Fructus et al. (2009) indicate that unsteadiness can alter stability boundaries from
the canonical values. Incident waves in this study are generated under the same
conditions as Troy & Koseff; the only difference is that the waves in this study
steepen at a ridge instead of at a contraction in the tank width. The wave frequency,
and thus the time scale associated with the wave unsteadiness, should be quite similar
between these two studies for a wave of the same incident ka and kd , and one
might expect that unsteadiness would lead to a similar critical Ri g for both cases.
But when Ri g = 0.2, the ridge case waves are near breaking or breaking, whereas in
the contraction case the waves are stable. This suggests that although unsteadiness
tends to decrease the critical Richardson number, the bathymetric interaction can
increase the critical value due to nonlinear steepening and flow separation. The
combined effect of unsteadiness and bathymetric interactions leads to a critical value
of Ri g = 0.3 ± 0.1, in this study. The exact critical value will likely vary depending
on the particular bathymetric interaction. The gradient Richardson number may
provide a rough estimate of when interfacial waves may break, but because of
the sensitivity of wave stability to unsteadiness and nonlinearity, caution should
be taken when applying a constant Ri g breaking criterion to an internal wave
flow.

It is difficult to distinguish whether interfacial shear or wave steepness is the primary
cause of the initial wave instability because many waves in this study have both low
Ri g and high nonlinearity (a/hr ). Breaking at a relatively constant Ri g (Fringer &
Street 2003) as well as qualitative features (e.g. figure 2a) suggest that shear plays
an important role in the initial wave instability. As the incident wave amplitude is
increased, however, qualitative observations show elements of convective instability
as well as shear instability (see figure 3), suggesting that both wave steepness and
interfacial shear play a role in wave breaking. Because of the complex mixed nature
of the wave instability, assuming the wave breaking is either shear or convective in
nature does not seem appropriate. Rather than assuming a mixing efficiency based
on the instability mechanism, further study is needed to directly measure the mixing
efficiency of such breaking events.
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